DECADE COUNTER; 4-BIT BINARY COUNTER

SN54/74LS290
SN54/74LS293

DECADE COUNTER; 4-BIT BINARY COUNTER

LOW POWER SCHOTTKY section can be used separately or tied together (Q to CP)to form BCD, Bi-quinary, or Modulo-16 counters. Both of the counters have a 2 -input gated Master Reset (Clear), and the LS290 also has a 2-input gated Master Set (Preset 9).

- Corner Power Pin Versions of the LS90 and LS93
- Low Power Consumption . . . Typically 45 mW
- High Count Rates . . . Typically 42 MHz
- Choice of Counting Modes . . . BCD, Bi-Quinary, Binary
- Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

	J SUFFIX CERAMIC CASE 632-08
	N SUFFIX PLASTIC CASE 646-06
	$\begin{aligned} & \text { D SUFFIX } \\ & \text { SOIC } \\ & \text { CASE } 751 \text { A-02 } \end{aligned}$
ORDERING INFORMATION	
SN54LSXXXJ SN74LSXXXN	Ceramic Plastic
SN74LSXXXD	SOIC

PIN NAMES

$\overline{\mathrm{CP}}_{0}$	Clock (Active LOW going edge) Input to $\div 2$ Section.
$\underline{\mathrm{CP} 1}$	Clock (Active LOW going edge) Input to $\div 5$ Section (LS290).
CP 1	Clock (Active LOW going edge) Input to $\div 8$ Section (LS293).
MR1, MR2	Master Reset (Clear) Inputs
MS1, MS2	Master Set (Preset-9, LS290) Inputs
Q0	Output from $\div 2$ Section (Notes b \& c)
Q1, Q2, Q3	Outputs from $\div 5 \& \div 8$ Sections (Note b)

LOADING (Note a)	
HIGH	LOW
0.05 U.L.	1.5 U.L.
0.05 U.L.	2.0 U.L.
0.05 U.L.	1.0 U.L.
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	5 (2.5) U.L.
10 U.L.	5 (2.5) U.L.

NOTES:
a) 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW.
b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.
c) The Q_{0} Outputs are guaranteed to drive the full fan-out plus the $C P_{1}$ Input of the device.

SN54/74LS290 • SN54/74LS293

LOGIC SYMBOL

$$
\begin{aligned}
& V_{C C}=\operatorname{PIN} 14 \\
& \mathrm{GND}=\text { PIN } 7 \\
& \text { NC }=\text { PINS } 2,6
\end{aligned}
$$

LS293

$$
\begin{aligned}
& \mathrm{VCC}=\text { PIN } 14 \\
& \text { GND }=\text { PIN } 7 \\
& \text { NC }=\text { PINS 1, } 2,3,6
\end{aligned}
$$

LOGIC DIAGRAMS

LS293

FUNCTIONAL DESCRIPTION

The LS290 and LS293 are 4-bit ripple type Decade, and 4-Bit Binary counters respectively. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five (LS290) or divide-by-eight (LS293) section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q_{0} output of each device is designed and specified to drive the rated fan-out plus the CP_{1} input of the device.

A gated AND asynchronous Master Reset $\left(\mathrm{MR}_{1} \cdot \mathrm{MR}_{2}\right)$ is provided on both counters which overrides the clocks and resets (clears) all the flip-flops. A gated AND asynchronous Master Set ($\mathrm{MS}_{1} \cdot \mathrm{MS}_{2}$) is provided on the LS290 which overrides the clocks and the MR inputs and sets the outputs to nine (HLLH).

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes:

LS290

A. BCD Decade (8421) Counter - the $\overline{\mathrm{CP}}_{1}$ input must be

LS290 MODE SELECTION

RESET/SET INPUTS				OUTPUTS			
MR1	MR2	MS ${ }_{1}$	MS2	Q_{0}	Q_{1}	Q_{2}	Q ${ }^{\text {a }}$
H	H	L	X	L	L	L	L
H	H	X	L	L	L	L	L
X	X	H	H	H	L	L	H
L	X	L	X				
X	L	X	L				
L	X	X	L				
X	L	L	X				

LS290
BCD COUNT SEQUENCE

cOUNT	OUTPUT			
	$\mathrm{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathrm{Q}_{\mathbf{3}}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H

NOTE: Output Q_{0} is connected to Input CP_{1} for $B C D$ count.

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
externally connected to the Q_{0} output. The $\overline{\mathrm{CP}}_{0}$ input receives the incoming count and a BCD count sequence is produced.
B. Symmetrical Bi-quinary Divide-By-Ten Counter - The Q3 output must be externally connected to the CP_{0} input. The input count is then applied to the CP_{1} input and a divide-by-ten square wave is obtained at output Q_{0}.
C. Divide-By-Two and Divide-By-Five Counter - No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function (CP_{0} as the input and Q_{0} as the output). The CP_{1} input is used to obtain binary divide-by-five operation at the Q_{3} output.

LS293

A. 4-Bit Ripple Counter - The output Q_{0} must be externally connected to input CP_{1}. The input count pulses are applied to input CP_{0}. Simultaneous division of 2, 4, 8, and 16 are performed at the Q_{0}, Q_{1}, Q_{2}, and Q_{3} outputs as shown in the truth table.
B. 3-Bit Ripple Counter - The input count pulses are applied to input CP $_{1}$. Simultaneous frequency divisions of 2,4 , and 8 are available at the Q_{1}, Q_{2}, and Q_{3} outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

LS293 MODE SELECTION

RESET INPUTS		OUTPUTS			
MR1	MR2	Q_{0}	Q_{1}	Q_{2}	Q3
H	H	L	L	L	L
L	H				
H	L				
L	,				

TRUTH TABLE

count	OUTPUT			
	$\mathbf{Q}_{\mathbf{0}}$	Q $_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H
12	L	L	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

Note: Output Q_{0} connected to input CP_{1}.

SN54/74LS290•SN54/74LS293

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54	4.5	5.0	5.5	V
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High	54,74			-0.4	mA
IOL	Output Current - Low	54			4.0	mA
		74			8.0	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed In All Inputs	HIGH Voltage for
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs	
		74			0.8			
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IIN}$	$-18 \mathrm{~mA}$
VOH	Output HIGH Voltage	54	2.5	3.5		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{O}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$or VIL per Truth Table	
		74	2.7	3.5		V		
VOL	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{l} \mathrm{OL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \text { per Truth Table } \end{aligned}$
		74		0.35	0.5	V	$\mathrm{IOL}=8.0 \mathrm{~mA}$	
IIH	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$	
IIL	```Input LOW Current MS, MR CP0 CP1 (LS290) CP1 (LS293)```				$\begin{aligned} & -0.4 \\ & -2.4 \\ & -3.2 \\ & -1.6 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	
Ios	Short Circuit Current (Note 1)		-20		-100	mA	$V_{C C}=$ MAX	
ICC	Power Supply Current				15	mA	$V_{C C}=$ MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\right)$

Symbol	Parameter	Limits						Unit
		LS290			LS293			
		Min	Typ	Max	Min	Typ	Max	
${ }_{\text {f MAX }}$	$\overline{C P}_{0}$ Input Clock Frequency	32			32			MHz
${ }_{\text {f MAX }}$	$\overline{\mathrm{CP}}_{1}$ Input Clock Frequency	16			16			MHz
$\overline{\mathrm{tPLH}}$ tPHL	Propagation Delay, CP_{0} Input to Q_{0} Output		$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 18 \end{aligned}$		$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 18 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	CP_{0} Input to Q_{3} Output		$\begin{aligned} & 32 \\ & 34 \end{aligned}$	$\begin{aligned} & 48 \\ & 50 \end{aligned}$		46 46	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	$\overline{\mathrm{CP}}_{1}$ Input to Q_{1} Output		$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 16 \\ & 21 \end{aligned}$		$\begin{aligned} & \hline 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 16 \\ & 21 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	$\overline{\mathrm{CP}}_{1}$ Input to Q_{2} Output		$\begin{aligned} & 21 \\ & 23 \end{aligned}$	$\begin{aligned} & 32 \\ & 35 \end{aligned}$		21 23	$\begin{aligned} & 32 \\ & 35 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	CP_{1} Input to Q_{3} Output		$\begin{aligned} & 21 \\ & 23 \end{aligned}$	$\begin{aligned} & 32 \\ & 35 \end{aligned}$		$\begin{aligned} & 34 \\ & 34 \end{aligned}$	$\begin{aligned} & 51 \\ & 51 \end{aligned}$	ns
tPHL	MS Input to Q_{0} and Q_{3} Outputs		20	30				ns
tPHL	MS Input to Q_{1} and Q_{2} Outputs		26	40				ns
tPHL	MR Input to Any Output		26	40		26	40	ns

AC SETUP REQUIREMENTS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits				Unit
		LS290		LS293		
		Min	Max	Min	Max	
tw	CP_{0} Pulse Width	15		15		ns
tw	CP_{1} Pulse Width	30		30		ns
tw	MS Pulse Width	15				ns
tw	MR Pulse Width	15		15		ns
trec	Recovery Time MR to CP	25		25		ns

RECOVERY TIME ($\mathrm{t}_{\text {rec }}$) is defined as the minimum time required between the end of the reset pulse and the clock transition form HIGH-to-LOW in order to recognize and transfer HIGH data to the Q outputs.

AC WAVEFORMS

Figure 1
*The number of Clock Pulses required between the tPHL and TPLH measurements can be determined from the appropriate Truth Tables.

Figure 2

Figure 3

This datasheet has been downloaded from: www.DatasheetCatalog.com

Datasheets for electronic components.

